अपसारी श्रेणी

Mathematical language is academic language that conveys mathematical ideas. This includes vocabulary, terminology, and language structures used when thinking about, talking about, and writing about mathematics. Mathematical language conveys a more precise understanding of mathematics than the conversational or informal language used every day to communicate with others.
अपसारी в английский
सन् 1749 की एक रपट के अनुसार, लियोनार्ड आयलर ने स्वीकार किया था कि श्रेणी अपसारी है लेकिन किसी न किसी प्रकार से इसका योग ज्ञात किया जा सकता है: . जब यह कहा गया कि इस तरह की श्रेणी जैसे 1−2+3−4+5−6 आदि का योग 1⁄4 है तो यह विरोधाभासी प्रतीत होना चाहिए।
In a 1749 report, Leonhard Euler admits that the series diverges but prepares to sum it anyway: . when it is said that the sum of this series 1 − 2 + 3 − 4 + 5 − 6 etc. is 1⁄4, that must appear paradoxical.
सन् 1749 की एक रपट के अनुसार, लियोनार्ड आयलर ने स्वीकार किया था कि श्रेणी अपसारी है लेकिन किसी न किसी प्रकार से इसका योग ज्ञात किया जा सकता है: . जब यह कहा गया कि इस तरह की श्रेणी जैसे 1−2+3−4+5−6 आदि का योग 1⁄4 है तो यह विरोधाभासी प्रतीत होना चाहिए।
In a 1749 report, Leonhard Euler admits that the series diverges but prepares to sum it anyway: . when it is अपसारी श्रेणी said that the sum of this series 1 2 + 3 4 + 5 6 etc. is 14, that must appear paradoxical.
Divergence and Convergence Mention should also be made of the phenomena of divergence and convergence.
And whosoever does not judge by that which Allh has revealed, such are the Zlimn (polytheists and wrong-doers - of a lesser degree).
वैयाकरणीकरण होने की सूचना देने वाले अन्य चार सिद्धान्त ये हैं- स्तरीकरण (layering), अपसार (divergence), निरति (persistence), तथा निवर्गीकरण (de-categorialization)।
यह सिद्ध करना सम्भव है कि हरात्मक श्रेणी के संकलन को इसकी तुलनात्मक श्रेणी के अनन्त समाकल से तुलना करने पर अपसारी प्राप्त होती है।
It is possible to prove that the harmonic series diverges by comparing its sum with an improper integral.
यह विधि मुख्यतः अपसारी अलक्षणी श्रेणियों का योग प्राप्त करने के लिए उपयोगी है तथा कुछ अर्थों में ऐसी श्रेणियों के लिए सर्वश्रेष्ठ परिणाम देती है।
It is particularly useful for summing divergent asymptotic series, and in some sense gives the best possible sum for such series.
"सन् १८९१ में अर्नेस्टो सिसैरा ने यह लिखते हुये- ""(1 − 1 + 1 − 1 + . )2 = 1 − 2 + 3 − 4 + . लिखा जा सकता है और इसका मान 1⁄4 के बराबर होता है"" आशा व्यक्त की कि अपसारी श्रेणियों को भी कलन के उपयुक्त माना जा सकता है।"
"In 1891, Ernesto Cesro expressed hope that divergent series would be rigorously brought into calculus, अपसारी श्रेणी pointing out, ""One already writes (1 1 + 1 1 + . )2 = 1 2 + 3 4 + . and asserts that both the sides are equal to 14."""
"यह विशेष रूप से बरॉक काल में हुई जब वास्तुकारों ने उन्नयन (ऊंचाई) और छत समतल के मध्य संतुलन की स्थापना के लिए उपयोग किया तथा चर्चों और महलों में बाहरी और आन्तरिक कला में संनादी सम्बंध स्थापित किया। विरोधाभास. प्रथमदृष्टया यह श्रेणी सहज नहीं लगती क्योंकि यह एक अपसारी श्रेणी है बल्कि इसका ""n"" वाँ पद जब ""n"" अनन्त की ओर अग्रसर है, शून्य की ओर अग्रसर होता है।"
This was so particularly in the Baroque period, when architects used them to establish the proportions of floor plans, of elevations, and to establish harmonic relationships between both interior and exterior architectural details of churches and palaces.
एक सुझाव यह है कि फैन्टम ऊर्जा अपसारी प्रसार उत्पन्न करता है, जिसा यह अर्थ होगा कि गुप्त ऊर्जा के प्रभावी स्रोत तब तक बढ़ते रहते हैं जब तक यह ब्रह्मांड की सभी शक्तियों पर आधिपत्य स्थापित नहीं कर लेता है।
The phantom energy model of dark energy results in divergent expansion, which would imply that the effective force of dark energy continues growing until it dominates all other forces in the universe.
गणित में अपसारी श्रेणी एक अनन्त श्रेणी है जो अभिसारी नहीं है, मतलब यह कि श्रेणी के आंशिक योग का अनन्त अनुक्रम का सीमान्त मान नहीं होता।
In mathematics, a divergent series is an infinite series that is not convergent, meaning that the infinite sequence of the partial sums of the series does not have a finite limit.
अपसार में ऊपर को आता हुआ जल परे को हटता है और अभिसार में यह होता है कि ऊपरी सतह का जल निचले स्तर पर चला जाता है और नीचे का जल ऊपर आकर उसका स्थान ले लेता है।
In divergence the upwelling waters move away from the place of rise, while in convergence, piling up is obviated by the subsidence of surface waters to flow away at a lower level.
अपसारी श्रेणी -->
> > This page is based on a Wikipedia article written by contributors (read/edit).
Text is available under the CC अपसारी श्रेणी BY-SA 4.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.
Tell your friends about Wikiwand!
- Introduction
- अबेलियन माध्य
- एबल संकलन (Abel summation)
- लिन्डलाफ संकलन
- ये भी देखें
- सन्दर्भ
Suggest as cover photo
Would you like to suggest this photo as the cover photo for this article?
Thank you for helping!
Your input will affect cover photo selection, along with input from other users.
Thanks for reporting this video!
This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:
An extension you use may be preventing Wikiwand articles from loading अपसारी श्रेणी properly.
If you're using HTTPS Everywhere or you're unable to access any article on Wikiwand, please consider switching to HTTPS (https://www.wikiwand.com).
An extension you use may be preventing Wikiwand articles from loading properly.
If you are using an Ad-Blocker, it might have mistakenly blocked our content. You will need to temporarily disable your Ad-blocker to view this page.
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
Definition--Sequences and Series Concepts--Divergent Series
This is part of a collection of definitions related to sequences, series, and related topics. This includes general definitions for sequences and series, as well as definitions of specific types of sequences and series, as well as their properties.
Note: The download is a PNG file.
Related Resources
To see additional resources on this topic, click on the Related Resources tab.
Create a Slide Show
Subscribers can use Slide Show Creator to create a slide show from the complete collection of math definitions on this topic. To see the complete collection of definitions, click on this link.
To learn more about Slide Show Creator, click on this Link.
Accessibility
This resources can also be used with a screen reader. Follow these steps.
Click on the Accessibility icon on the upper-right part of the screen.
From the menu, click on the Screen Reader button. Then close the Accessibility menu.

Click on the PREVIEW button on the left and then click on the definition card. The Screen Reader will read the definition.
Common Core Standards | CCSS.MATH.CONTENT.6.SP.B.4, CCSS.MATH.CONTENT.HSF.IF.A.3, CCSS.MATH.CONTENT.HSF.BF.A.2, CCSS.Math.CONTENT.HSF.LE.A.2 |
---|---|
Grade Range | 6 - 9 |
Curriculum Nodes | Algebra • Sequences and Series • Series |
Copyright Year | 2021 |
Keywords | data analysis, arithmetic sequence, common difference, definitions, glossary terms, geometric sequence, common ratio |
The Media4Math Definitions Library
A Visual Glossary for Your Students
Vocabulary is an important part of the math curriculum. In fact, many students struggle with math concepts because they lack the mastery of key vocabulary. Textbook instruction or examples often rely on these key terms and without a proper grounding in the relevant vocabulary, students will continue to struggle.
With that in mind, Media4Math has developed an extensive glossary of key math terms. Each definition is a downloadable image that can easily be incorporated into a lesson plan. Furthermore, each definition includes a clear explanation and a contextual example of the term. To see the complete collection of these terms, click on this link.
Math vocabulary doesn't consist of isolated terms. In fact, for any given concept there are clusters of vocabulary terms that students need to learn in order to better understand the concept. The Media4Math glossary consists of clusters of such terms. This is a summary of these clusters. Click on each link to see that collection of terms and definitions.
Instructional Suggestions
Here are some idea for how to use this library of vocabulary terms:
Creating Connections
- As you introduce a new topic, for example Slope, go to the corresponding collection of definitions by linking on one of the collections above.
- Each definition includes an example of the term. Have students research one or more of these terms.
- Have a group of students research these terms and begin making connections. The idea is to encourage students to start using these terms as they begin discussing the main concept.
To continue this example, let's look at the collection of terms under slope. Clicking on the link reveals that there are 17 terms under the category of slope. As you can see, this is more than just a simple definition of a single term.
As students analyze these definitions, they begin to see common terms: ratio, rise over run, change in coordinates, and so forth. Working in teams, students can begin to build connections among these terms. Encourage them make connections among these related terms, creating a graphic similar to this:
With an activity like this, students begin to use math vocabulary but, more important, tie it to math concepts.
Creating Word Games
Once students are familiar with the collection of terms have them create word search or crossword puzzles using these terms. There are many free online tools for creating such puzzles.
In addition, Media4Math has a collection of word games and vocabulary puzzles to allow students to further practice their vocabulary skills. To see the current collection of puzzles see the links below:
The Illustrated Math Dictionary
Subscribers to Media4Math also get access to The Illustrated Math Dictionary. This ebook brings together math definitions and related multimedia resources. This ebook brings together the glossary terms for concepts like Linear Functions, Quadratic Functions, and Polynomial functions. Each term has an audio component, along with related resources. The Illustrated Math Dictionary is more than just a vocabulary tool. Use it for instruction or review.
Additional Resources
The What Works Clearinghouse has a number of Practice Guides that focus on evidence-based practices that will help struggling students. In particular, the Practice Guide entitled, Assisting Students Struggling with Mathematics: Intervention in the Elementary Grades, emphasizes the importance of math vocabulary. In particular, make a not of the following point:
Mathematical language is academic language that conveys mathematical ideas. This includes vocabulary, terminology, and language structures used when thinking about, talking about, and writing about mathematics. Mathematical language conveys a more precise understanding of mathematics than the conversational or informal language used every day to communicate with others.
अपसारी श्रेणी किसे कहते हैं , की परिभाषा क्या है , divergent series in hindi meaning definition
वह श्रेणी जो अभिसारी नहीं है | वह अनंत श्रेणी जिसका अपसारी श्रेणी योगफल कोई निश्चित संख्या न हो | जैसे , यदि श्रेणी के n पदों का योग Sn हो अथवा कोई अनिर्धार्य अपसारी श्रेणी संख्या हो तो श्रेणी क्रमशः पूर्णतया अपसारी , दोलायमान अपसारी कहलाती है |
question : what is divergent series in hindi define it ?
answer : divergent series in hindi या अपसारी श्रेणी को ऊपर परिभाषित किया गया है –
वह श्रेणी जो अभिसारी नहीं है | वह अनंत श्रेणी जिसका योगफल कोई निश्चित संख्या न हो | जैसे , यदि श्रेणी के n पदों का योग Sn हो अथवा कोई अनिर्धार्य संख्या हो तो श्रेणी क्रमशः पूर्णतया अपसारी , दोलायमान अपसारी कहलाती है | कहा जाता है |